The opposing homeobox genes Goosecoid and Vent1/2 self-regulate Xenopus patterning

نویسندگان

  • Veronika Sander
  • Bruno Reversade
  • E M De Robertis
چکیده

We present a loss-of-function study using antisense morpholino (MO) reagents for the organizer-specific gene Goosecoid (Gsc) and the ventral genes Vent1 and Vent2. Unlike in the mouse Gsc is required in Xenopus for mesodermal patterning during gastrulation, causing phenotypes ranging from reduction of head structures-including cyclopia and holoprosencephaly-to expansion of ventral tissues in MO-injected embryos. The overexpression effects of Gsc mRNA require the expression of the BMP antagonist Chordin, a downstream target of Gsc. Combined Vent1 and Vent2 MOs strongly dorsalized the embryo. Unexpectedly, simultaneous depletion of all three genes led to a rescue of almost normal development in a variety of embryological assays. Thus, the phenotypic effects of depleting Gsc or Vent1/2 are caused by the transcriptional upregulation of their opposing counterparts. A principal function of Gsc and Vent1/2 homeobox genes might be to mediate a self-adjusting mechanism that restores the basic body plan when deviations from the norm occur, rather than generating individual cell types. The results may shed light on the molecular mechanisms of genetic redundancy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of CMIX, a chicken homeobox gene related to the Xenopus gene mix.1

Members of the TGFbeta, Wnt and FGF families act in concert to induce and pattern the mesoderm of gastrulating embryos. Downstream effectors for these growth factors include homeobox proteins, which also feed back to activate and repress upstream signaling pathways (e.g. Fainsod, A., Steinbeisser, H., De Robertis, E.M. 1994. On the function of BMP-4 in patterning the marginal zone of the Xenopu...

متن کامل

Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes.

A Xenopus gene whose expression can be activated by the organizer-specific homeobox genes goosecoid and Xnot2 was isolated by differential screening. The chordin gene encodes a novel protein of 941 amino acids that has a signal sequence and four Cys-rich domains. The expression of chordin starts in Spemann's organizer subsequent to that of goosecoid, and its induction by activin requires de nov...

متن کامل

Molecular nature of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid.

This study analyzes the function of the homeobox gene goosecoid in Xenopus development. First, we find that goosecoid mRNA distribution closely mimics the expected localization of organizer tissue in normal embryos as well as in those treated with LiCl and UV light. Second, goosecoid mRNA accumulation is induced by activin, even in the absence of protein synthesis. It is not affected by bFGF an...

متن کامل

High mobility group B proteins regulate mesoderm formation and dorsoventral patterning during zebrafish and Xenopus early development

The high mobility group (HMG) proteins constitute a superfamily of nuclear proteins that regulate the expression of a wide range of genes through architectural remodeling of the chromatin structure, and the formation of multiple protein complexes on promoter/enhancer regions, but their function in germ layer specification during early development is not clear. Here we show that hmgb genes regul...

متن کامل

A role for cytoplasmic determinants in mesoderm patterning: cell-autonomous activation of the goosecoid and Xwnt-8 genes along the dorsoventral axis of early Xenopus embryos.

Although an induction event is required for the formation of mesoderm in Xenopus embryos, it is not clear that this induction is wholly sufficient to give rise to a correctly patterned mesodermal layer. We have studied the expression of the two genes, goosecoid and Xwnt-8, in Xenopus gastrulae in which cell-cell communication, and therefore mesoderm induction, has been prevented by frequent cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO Journal

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2007